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STATISTICAL DEVELOPMENTS AND APPLICATIONS

A Comparative Study of the Dimensionality of the
Self-Concealment Scale Using Principal Components Analysis

and Mokken Scale Analysis
ANDREAS A. J. WISMEIJER, KLAAS SIJTSMA, MARCEL A. L. M. VAN ASSEN, AND AD J. J. M. VINGERHOETS

Tilburg University, Tilburg, The Netherlands

We discuss and contrast 2 methods for investigating the dimensionality of data from tests and questionnaires: the popular principal components
analysis (PCA) and the more recent Mokken scale analysis (MSA; Mokken, 1971). First, we discuss the theoretical similarities and differences
between both methods. Then, we use both methods to analyze data collected by means of Larson and Chastain’s (1990) Self-Concealment Scale
(SCS). We present the different results and highlight the instances in which the methods complement one another so as to obtain a stronger result
than would be obtained using only 1 method. Finally, we discuss the implications of the results for the dimensionality of the SCS and provide
recommendations for both the further development of the SCS and the future use of PCA and MSA in personality research.

The decision to keep certain information secret often depends on
situational demands, but personality and cultural and socioeco-
nomic factors may also be relevant: Some people are more prone
to secrecy than others. That is, some people feel relief when they
disclose highly personal information, whereas others avoid to
reveal the same information at all cost. As a consequence, part of
secret keeping can be understood in terms of stable personality
traits (Larson & Chastain, 1990; Pennebaker, 1989). A well-
known trait in this context is self-concealment, which is defined
as the “predisposition to actively conceal from others personal
information that one perceives as distressing or negative” (Lar-
son & Chastain, 1990, p. 440). Self-concealed personal informa-
tion is a subset of private personal information that is conciously
accessible to the individual and actively kept from the aware-
ness of others. It is negative in valence and, if disclosed at all,
usually confided to only a small number of persons because of
its highly intimate content (Larson & Chastain, 1990).

To measure self-concealment, Larson and Chastain (1990)
developed the Self-Concealment Scale (SCS). According to
Larson and Chastain, the SCS items refer to three different
facets of withholding personal information: (a) tendency to self-
conceal, (b) possession of a personally distressing secret, and
(c) apprehension about disclosure. The reported psychometric
properties of the SCS such as internal consistency and test–
retest reliability are satisfactory (Cramer & Barry, 1999; Larson
& Chastain, 1990), and the total scale score has repeatedly been
shown to have a positive significant correlation with depression,
anxiety, and physical discomfort (Ichiyama et al., 1993; King,
Emmons, & Woodley, 1992).
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Although Larson and Chastain (1990) claimed that the SCS
taps three distinct aspects of self-concealment, they did not ex-
plicitly design their questionnaire to measure these aspects. This
leaves doubt with respect to the interpretation of the dimension-
ality of the SCS. In fact, Larson and Chastain were the first to
report that the SCS could be viewed as bidimensional if Kaiser’s
(1960) eigenvalue-greater-than-1 criterion was used and as uni-
dimensional because the first factor explained the lion’s share
of the total variance (i.e., 65%). Additionally, Larson and Chas-
tain argued that the second factor was uninterpretable even after
application of several rotation algorithms. More recent studies
using the SCS have all reported similar results (Cramer & Lake,
1998; Ichiyama et al., 1993; King et al., 1992; Vögele & Steptoe,
1992).

In an attempt to confirm Larson and Chastain’s (1990) pro-
posed unidimensionality of the SCS, Cramer and Barry (1999)
designed two consecutive studies using independent student
samples. In the first study, Cramer and Barry assessed the total-
score reliability (estimated by means of Cronbach’s alpha) and
explored the SCS’s factor analytic structure; and in the second
study, they analyzed the factor structure by means of a confir-
matory factor analysis and evaluated both the total-score relia-
bility and the retest reliability. Cramer and Barry’s conclusions
were essentially the same as those of Larson and Chastain:
Exploratory factor analysis suggested two subscales, whereas
confirmatory factor analysis and reliability analysis suggested a
single-factor solution. Cramer and Barry (1999) concluded that
“whereas the present study supported a unidimensional concep-
tualization, it does not preclude researchers from adopting the
multifactorial model” (p. 636). In other words, the dimension-
ality of the SCS still remained unclear.

To determine the dimensionality of a scale, many statistical
methods are available of which principal components analysis
(PCA) probably is the most popular. PCA is an exploratory
method that is used in situations in which little prior knowledge
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is available about the dimensionality of the data. This situation
is typical of much test and questionnaire construction in person-
ality research, and questionnaire construction with respect to
self-concealment is no exception. Given the uncertainty about
the true dimensionality of the data, a second opinion provided
by a conceptually different method may be very useful. Mokken
scale analysis (MSA; Mokken, 1997; see also Hemker, Sijtsma,
& Molenaar, 1995; Sijtsma, 1998; Sijtsma & Molenaar, 2002)
can be used for this purpose. MSA is a method from item re-
sponse theory (Embretson & Reise, 2000; Van der Linden &
Hambleton, 1997). Item response theory defines models for the
measurement of, for example, personality traits. These models
put forward assumptions about the dimensionality of measure-
ment and offer techniques to explore and test hypotheses about
dimensionality.

Our aim in this article is twofold: (a) to provide a theoretical
introduction to MSA and compare PCA with MSA and (b) to
apply PCA and MSA to the SCS to scrutinize its dimension-
ality. Because our goal is to compare techniques that can be
used to explore a scale’s dimensionality, we do not compare
the results of PCA and MSA to confirmatory factor analysis. In
confirmatory factor analysis, based on a hypothesis about the
composition of the scale, one specifies both the dimensional-
ity of the scale and which items group on the same dimension.
In this study, however, we did not start from such explicit hy-
potheses but instead explored the dimensionality and the item
assignment to the dimensions.

We start following with a description of the typical situation
in which personality questionnaires are constructed. Then we
provide outlines of PCA and MSA, enumerate the properties of
both methods, and compare the methods with respect to these
properties. Subsequently, we apply both methods to the SCS
data and discuss the results, highlighting the instances in which
the methods complement one another so as to obtain a stronger
result than would be obtained using only one method. Finally,
we discuss the implications of the results for the dimensionality
of the SCS and provide recommendations for both the further
development of the SCS and the future use of PCA and MSA in
personality research.

PRELIMINARY CONSIDERATIONS ON PERSONALITY
MEASUREMENT

Ideally, the construction of a personality inventory rests on a
well-established theory about the trait to be measured. However,
for many traits, such a theory has not been well developed and
sometimes a “theory” consists only of a set of intuitions and
experiences that have yet not been articulated well enough to
have been exposed to rigorous hypothesis testing. Also, in the
absence of a theory, test construction may lean heavily on the
experience of other researchers and existing questionnaires that
have the status of “try-out” instruments. Additionally, it may be
an open issue whether an existing instrument, even if it has been
based on sound theory, can be used in a population in which it
has not been used before. All these instances have in common
that it is unknown or at least uncertain what the test measures
exactly and whether one or more traits are involved in driving
responses to the items, that is, whether the inventory induces
responses that are driven by one trait (hopefully the intended
trait) or a multitude of traits.

Applied to self-concealment, it may thus be hypothesized
that self-concealment is a unitary trait that drives responses to
the items from a questionnaire such as the SCS; but because
little is known about this trait, it may be difficult to select a
collection of items that cover only this trait. Actually, because
of this uncertainty, the researcher may have selected items that
appear to be good choices at first sight but that turn out to be
ambiguous stimuli when the data collected by means of these
items are analyzed by means of PCA, MSA, or another method.
Because this particular outcome may not have been anticipated,
as is typical of exploratory research, the use of several statistical
methods for assessing the dimensionality of the data may shed
a new and different light on the trait structure. This may help
to formulate hypotheses on the trait structure that are tested in
future research and to construct better measures for the trait(s).

PRINCIPAL COMPONENTS ANALYSIS

Although quite well known, we first explain PCA in some de-
tail so that it can be compared with MSA later on. Suppose a trait
is measured by means of rating scale items. These items typically
consist of a statement, for example, about self-concealment, and
following this statement a small number of boxes that represent
different ordered levels of endorsement with the statement. The
direction of scoring the items depends on whether the statement
is positive or negative with respect to the trait.

Let the questionnaire contain J items, and let items be indexed
j = 1, ..., J . If the number of ordered boxes in each item is m+
1, we assign scores 0, . . . , m such that a higher score reflects a
higher trait level. Let Xj be the random variable for the score
on item j , and let xj be a score on this item; here, the scores
are xj = 0, ..., m. The total score is defined as the sum of the J
item scores:

X+ =
J∑

j=1

Xj ;

notice that the total score can vary from 0 to J × m. High values
for the total score are assumed to reflect higher levels on the trait,
but this assumption is only correct if the items are all driven by
the same trait that represents, in our case, self-concealment. PCA
may be used to investigate whether this assumption is correct.

PCA basically does the following (see, e.g., Gorsuch, 1983;
Nunnally, 1978, for more details). A weighed sum of the J
item scores, technically also known as a linear combination, is
constructed. This weighted sum is denoted by C1 (subscript 1
indicates that this is the first weighed sum score and that others
will follow), and item weights are denoted by wj1 (subscript j
says that this is the weight for item j, and subscript 1 that it is
the weight that is used to construct C1). Then, we have that

C1 =
J∑

j=1

wj1Xj .

The weights w are sought such that the variance of sum score C1
is maximal (given a constraint on the weights that serves to find
a unique solution to the problem; this need not bother us here).
Weighed sum C1 is the first principal component. After C1 has
been determined, a second weighed sum (the second principal
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DIMENSIONALITY OF THE SELF-CONCEALMENT SCALE 325

component) is sought, this time taking the weighed sum of the
residuals of the item scores after their regression on C1 has been
subtracted. This sum is denoted C2, and the use of the item score
residuals ensures that the correlation between the two principal
components equals 0. Like the first time, the weights are cho-
sen such that the variance of C2 is maximal. Similarly, a third
weighed sum, a fourth, and so on, are constructed. Typically,
each next principal component explains less variance than its
predecessor. The maximum number of principal components
that can be determined equals the maximum number of items,
J.

The J principal components together explain all the variance
in the J items; thus, the J principal components and the J items
contain exactly the same amount of information. However, PCA
“piles up” as much of the variance from the items as possible
in the first principal component, and then it piles up as much
as possible from the remaining variance in the second principal
component and so on. Looked at PCA this way, it is a method
to summarize as much information from a set of items in as few
principal components as possible.

Piling up as much information in as few principal components
as possible does not automatically result in well-interpretable
components. To obtain a solution that is well interpretable, usu-
ally the first few, say M, principal components that explain
much variance relative to the amount explained by one item are
subjected to further analysis. Several techniques may be used
for selecting these M principal components. One well-known
method is a graphical method proposed by Cattell (1966), called
the scree test. The scree plot shows the amount of explained
variance as a function of the rank number of the principal com-
ponent. What one usually sees in the plot is that these successive
amounts decrease rapidly (steep descent) and then tend to level
off. M is determined by retaining those principal components
in the steep descent before the first one on the line where the
magnitude tends to level off. The scree plot requires subjective
judgement especially if the elbow is not sharp.

Kaiser’s (1960) eigenvalue-greater-than-1 criterion is another
well-known method. Here, the number M is determined by the
number of principal components that explain more variance than
the variance of one individual item. Unlike the scree plot, this is
an objective criterion but one that can easily lead to the selection
of too many principal components, and the result may be the
overestimation of the dimensionality, as factors are sometimes
split into bloated specifics (e.g., Kline, 1987; Rummel, 1970).

The analysis to which the M selected components are sub-
jected next is called rotation. Algebraically, rotation means that
M principal components are factor analyzed—rotated, in tech-
nical parlance—to obtain M new factors that are more inter-
pretable. Geometrically, rotation means the following. The J
items can be displayed as points in an M-dimensional orthogo-
nal space. The M axes represent the M principal components,
and the coordinates of the items are the loadings of the items on
the principal components. These loadings are denoted by ajc (c
indexes principal components; c = 1, . . . , M). Indeed, rotation
means that the axes are rotated around the origin into a new po-
sition, whereas the items maintain their position. So one obtains
new axes, now called factors, and for each item a new set of
coordinates, which are their loadings on the factors. Rotation is
done in such a way that the resulting sets of loadings facilitate
the interpretation of the factors. Many rotation methods exist
(e.g., Gorsuch, 1983, pp. 203–204). An important distinction

is between rotation resulting in orthogonal/uncorrelated factors
(these are the geometrical and algebraic interpretations, respec-
tively), as with varimax rotation, and oblique/correlated factors
as with oblimin rotation.

PCA in combination with a rotation method is typically used
for exploring the dimensionality of a data set collected by means
of a personality questionnaire. In the absence of pronounced ex-
pectations, the method provides the most efficient summary of
the data by means of principal components. The number of
principal components retained for rotation is often determined
by criteria that are not perfect and invite some trial and error.
Whenever researchers believe that correlated factors are more
realistic than uncorrelated factors, oblique rotation is preferred
over orthogonal rotation. Although correlated factors may more
realistically reflect a trait structure, the interpretation of the pat-
tern of loadings may be more complicated due to their condi-
tioning on the correlations between the factors. This means that
the proportions of item variance explained by each of the factors
can no longer be added across factors and that squared (semi)
partial correlations are needed instead (cf. regression analysis).

PCA has gained enormous popularity among personality re-
searchers (see, e.g., the volumunous literature with respect to
the Big Five; e.g., De Raad & Perugini, 2002). This is probably
due to its quick and easy applicability using one of the standard
statistical software packages. At the basis of much personality
research often stands a theory about the structure of the personal-
ity aspects of interest, but the final structure of the questionnaire
regularly is the result of PCA plus rotation or other factor anal-
ysis methods (e.g., Cattell’s, 1956–1957, 16 PF questionnaire,
which allows measurement of 16 bipolar dimensions of person-
ality summarized by five factors). The respondent is assigned
sum scores on each item sets that load on a particular factor and
thus identify a particular trait or an aspect of a more compre-
hensive trait. These scores can be weighed sums of item scores
with weights resulting from PCA plus the rotation method used.
However, because such weighed sum scores tend to correlate
high in the 90s with unweighed sum scores like X+, in practical
test use, often the unweighed sum scores are used. The resulting
profile of scores is then used for personality diagnosis.

MOKKEN SCALE ANALYSIS

The Monotone Homogeneity Model

Assumptions of the Monotone Homogeneity Model. Like
PCA, MSA can be used to identify one or more dimensions in
the data, but in addition to PCA, the method does this in such a
way that the items selected in one cluster satisfy a measurement
model known as the monotone homogeneity model (MHM;
Mokken & Lewis, 1982; Sijtsma & Molenaar, 2002). This model
implies that the persons can be ordered on a scale using the
items in a selected cluster. Thus, MSA provides a method for
dimensionality investigation and a measurement model in one
technique. MSA has been used frequently in psychology (e.g.,
Michielsen, De Vries, Van Heck, Van de Vijver, & Sijtsma,
2004) but also in political science research (e.g., Van Schuur,
2003), marketing research (e.g., Paas & Molenaar, 2005), and
social-medical research (e.g., Roorda et al., 2005) for assessing
the dimensionality of the data and constructing scales.

The MHM is an item response theory model (Junker, 2001;
Sijtsma & Meijer, 2007; Sijtsma & Molenaar, 2002; Stout,
2002). Item response theory models are based on assumptions
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that restrict relationships between items and underlying traits.
In particular, the MHM is based on two assumptions about the
dimensionality of the data and one about the relationship of
items with underlying traits:

1. Unidimensionality; that is, all items measure the same la-
tent trait (denoted θ ). An example is that all items measure
self-concealment, assuming this is a unitary construct. Uni-
dimensionality is generally considered a desirable property
of measurement primarily because it simplifies the interpre-
tation of answers to the items in a questionnaire.

2. Monotonicity; that is, the higher a respondent’s disposi-
tion on the latent trait the more likely it is that (s)he ob-
tains higher scores on the items measuring that latent trait.
For example, people who have a stronger tendency to self-
conceal (θ ) are more likely to obtain higher scores on posi-
tively phrased rating-scale statements with respect to secrecy.
More precisely, for item score Xj (e.g., Xj = 0, ..., 4, for
many rating scales) the mathematical function that expresses
this monotone relationship is called the item step response
function (ISRF), and it is given by conditional probability
P (Xj ≥ x|θ ). For x = 0, the ISRF P (Xj ≥ 0|θ ) equals 1 by
definition, only expressing that everybody has one of the five
possible item scores; but for x ≥ 1, the ISRFs are assumed
to be monotone, nondecreasing in the latent trait θ .

3. Local independence; that is, an individual’s response to item
j is not influenced by his or her responses to the other items
in the same questionnaire. This assumption rules out de-
pendence among items due to an answer to one item in-
fluencing the answers to the next items. This could hap-
pen, for example, because respondents develop new ideas
or personal hypotheses about self-concealment from hav-
ing answered previous items in the same questionnaire. Al-
though developing such ideas as one goes through the ques-
tionnaire is not entirely unlikely, psychometricians consider
this a case of “obtrusive” measurement, which is considered
undesirable.

These assumptions together define three desirable properties
of a measurement instrument. Many researchers will want their
instrument to measure one latent trait—unidimensionality—and
not an obscure or complicated mixture of influences on item re-
sponses leading to uninterpretable measurement results. Also,
they will likely find it reasonable that a higher trait level in-
creases the probability that people obtain higher item scores—
monotonicity—and they may also agree that respondents should
preferably approach each new item independent of the previous
items so as not to deliberately construct a particular, possibly
invalid image of themselves: local independence.

The three assumptions of the MHM together imply person
measurement. That is, if the MHM can be shown to fit the data
well, then the total score X+ can be used to order people on
the latent trait θ . Due to the limited number of items usually
included in a test, this ordering is liable to random error. The
MHM also provides a method to assess the accuracy of this or-
dering. We discuss this method later on. Ordinal measurement
is important because the practical use of many tests and ques-
tionnaires requires that people can be ordered on a scale as in
“Mary has a higher level of self-concealment than Judy,” and
“On average women keep more secrets to themselves than men.”

The MHM and PCA

An important distinction between MSA and PCA is that the
link between the underlying traits and the item scores is less
explicit in PCA than in MSA. Mathematically, PCA is based on
solving a problem in matrix algebra that finds the J eigenvalues
(corresponding to the percentages of explained variance of each
of the principal components) of the correlation matrix of the item
scores. Because it uses the interitem correlations, PCA assumes
that relationships between item scores are linear. It is well known
(e.g., Nunnally, 1978, pp. 141–146) that correlations are heavily
distorted as soon as the items have different distributions of
item scores, in particular when items have only a few (less than,
e.g., five) answer categories. Then PCA results in so-called
difficulty factors; these are factors that are due to the differences
between item-score distributions in addition to what the items
measure in common. This problem is absent when item-score
distributions are equal, but this is a rare situation and in fact
one that is actively avoided by test constructors when they seek
the items to represent different intensity levels with respect to
the trait of interest. It is sometimes advocated to use tetrachoric
or polychoric correlations, but it has also been noted that this
introduces other methodological problems (Van Abswoude, Van
der Ark, & Sijtsma, 2004).

The near absence of assumptions on the relation between
items and underlying traits—only linearity is assumed—means
that PCA is mainly an instrument to assess the dimensionality
of the data. Thus, the outcome of a PCA followed by some
rotation logically results in dimensions and not in scales. Of
course, we know that the practice of test construction assumes
that a PCA also results in scales, but the absence of assump-
tions that restrict relationships between items and the underlying
traits does, strictly speaking, not allow such conclusions. An-
other interesting observation in this context is that PCA uses the
eigenvalues of the interitem correlation matrix, thus assuming
that the 1’s on the diagonal represent true-score variance only.
Thus, an implicit assumption of PCA is that error variance is 0,
an assumption that is usually seen as unrealistic and that is not
shared by factor analysis models.

Fit and Misfit of the MHM to the Data

The MHM and its three assumptions seem to be intuitively
appealing, but this does not mean that they are congruent with
the true mental processes. Thus, the data collected by means of a
questionnaire may sometimes be multidimensional; the relation
between item score and latent trait may not always be monotone;
and while filling out the inventory, some respondents may feel
inclined to construct a particular coherent, perhaps also socially
desirable image of themselves that only partly reflects their
true level of self-concealment. In other words, other sources
that drive item responses, such as social desirability, might be
active, thus introducing dependence among items in addition
to that caused by the trait of interest. This violation of local
independence tends to manifest itself in a multidimensional data
structure (e.g., Stout, 2002).

Because there is always the possibility of a discrepancy be-
tween the model on one hand and the data on the other hand, it
must be checked whether a particular model indeed fits the data.
If it fits, by implication, the properties of the model, such as an
ordinal person scale, hold for the data. If it does not fit, a useful
alternative course of action is to investigate the possibility of
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DIMENSIONALITY OF THE SELF-CONCEALMENT SCALE 327

multidimensionality; that is, the alternative that several latent
traits drive item responses and that different sets of items can be
identified, each of which measures a different latent trait.

The MHM and the Rasch Model

Finally, it may be interesting to briefly compare the MHM
to the Rasch model (e.g., Embretson & Reise, 2000; Van der
Linden & Hambleton, 1997), which is a related and popular item
response model. The simple Rasch model is defined only for
dichotomous item scores (yes–no, correct–incorrect; implying
only two different item scores), but generalizations to rating
scale item scores also have been proposed (e.g., Masters &
Wright, 1997). For simplicity, we restrict the comparison of the
MHM and the Rasch model to dichotomous items.

Like the MHM, the Rasch model assumes unidimensional
and locally independent measurement; but unlike the MHM,
the Rasch model restricts the monotonicity assumption to logis-
tic curves with equal positive slopes (equal discrimination, in
technical parlance). Thus, the Rasch model is a special case of
the MHM (for dichotomous items): All logistic response curves
with equal positive slopes obviously are monotone (thus the
Rasch model is also an MHM model, albeit a specialized one),
but not all monotone response curves are logistic, let alone have
equal positive slopes (thus the MHM model does not imply the
Rasch model; the MHM is a more general item response model;
see Sijtsma & Molenaar, 2002, chap. 2).

An advantage of the more restrictive Rasch model is that per-
sons can be measured on an interval scale. This may be interest-
ing in an educational measurement context in which different
item subsets from item banks (i.e., large numbers of calibrated
items all measuring, e.g., the same ability) are used to measure
achievement in different groups, thus afterwards necessitating
the equating of the different scales for comparing the perfor-
mance of the different groups. The disadvantage of the Rasch
model is that requiring the items to all have the same discrimina-
tion seriously restricts the likelihood that the Rasch model will
fit the complete data. This may even be too great a limitation in
achievement testing (in which different items may be relatively
similar), and for that reason other, less restrictive item response
models are often used such as the 2- and 3-parameter logistic
models (e.g., Embretson & Reise, 2000). In personality testing,
items are often intentionally very different so as to adequately
cover the personality trait of interest. Here, there is no reason
to require response curves to have equal positive slopes. Such a
requirement would lead to the rejection of many items that cover
an interesting aspect of the trait and have monotone response
curves, thus contributing to ordinal person measurement.

EVALUATING THE FIT OF THE MHM TO DATA

The investigation of whether the MHM fits the data well is
often captured under the name of MSA (Sijtsma & Molenaar,
2002). Researchers tend to narrow an MSA down to the appli-
cation of an automated item selection algorithm that serves to
identify subsets of items that each are driven by different traits
and that each allow the ordering of people with a user-specified
degree of accuracy. We also use this algorithm to investigate
the dimensionality of the data. In a separate subsection, we also
explain the investigation of monotonicity so as to be able to
evaluate the fit of the MHM to our SCS data.

Investigating Dimensionality of Data

Scalability coefficients. A typical MSA starts with the in-
vestigation of the dimensionality of the data and the identifica-
tion of subsets of items that constitute a scale of which the accu-
racy is controlled by the researcher. The tool for this is the scal-
ability coefficient for pairs of items, j and k, which is denoted
as Hjk . Coefficient Hjk equals the ratio of the items’ covari-
ance and their maximum covariance given the items’ univariate
score-frequency distributions (Molenaar, 1997). This definition
avoids the problems with respect to the distorting effect of differ-
ent item-score distributions on the interitem correlations alluded
to previously, and as a result, an MSA does not yield artifactual
“difficulty factors.”

Based on the item-pair coefficients, Hjk , item coefficients,
denoted as Hj , are defined that express the degree to which an
item is related to the other items in the scale. Under the MHM, a
stronger relationship expressed by a higher Hj value means that
the ISRFs are steeper. Thus, a higher Hj value means that people
with relatively low latent trait values and people with relatively
high latent trait values are better separated: Almost all people
with low trait values score low on the item, whereas almost all
people with high trait values score high on that item. This is seen
as a desirable property of a measurement instrument: Items that
do not or only weakly separate people on the scale of interest
contribute only little to an accurate ordering.

Finally, the total-scale coefficient, denoted as H, expresses
the degree to which the total score X+ accurately orders persons
on the latent trait scale θ . Given a certain number of items, higher
H values express a more accurate person ordering that is, as was
seen earlier, a desirable property of measurement instruments.

Each of the item-pair, individual-item, and total-scale coef-
ficients are related as follows to the MHM. The MHM implies
that each coefficient has a value between 0 (minimum) and 1
(maximum; i.e., 0 ≤ Hjk,Hj ,H ≤ 1), so that negative values
(i.e., Hjk,Hj ,H < 0) are in conflict with the model. In partic-
ular, negative Hj values may lead to the identification and the
rejection of one or more items from the scale.

Definition of a unidimensional scale. The Hjk , Hj , and
H coefficients are the basis of the definition of a scale (due
to Mokken, 1971, p. 184; also see Sijtsma & Molenaar, 2002,
pp. 67–68). Unlike Mokken, in this definition, we use item-
pair coefficient Hjk instead of product moment-correlation ρjk

(although formally this choice is unimportant, but using Hjk

fits better in with the discussion thus far). Positive item-pair
coefficients Hjk are implied by the MHM, and negative values
are often interpreted as a sign of multidimensionality. For item
coefficient Hj , we introduce a positive lower bound denoted by
c, which ascertains that items that belong to a scale provide
a contribution to the accuracy of person ordering that exceeds
this lower bound. Thus, lower bound c should be seen as a
safeguard against weak items that contribute little to accurate
person ordering. Then, a scale is defined as a set of items for
which, given a value of c, the next two conditions are satisfied:

1. Hjk > 0, all item pairs j, k; j �= k; and
2. Hj ≥ c > 0, all items j = 1, ..., J .

The researcher can control the lower bound c; and the higher
c, the better an item separates persons with low trait values
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from those with high values and the more accurate the person
ordering given that number of items.

An important relationship between item coefficients Hj and
total-scale coefficient H is that min(Hj ) ≤ H ≤ max(Hj ); thus,
by requiring that items can only be admitted to the test if they
have item scalabilities of at least c, the researcher also controls
the minimum of the H coefficient.

Choosing a minimal lower bound of c = 0 poses almost no
demands on the scalability of the items except that all selected
items have a positive Hj . This may result in a single scale with
an unacceptably low total-scale H value because several low-
quality items have been selected that have Hj s close to 0, mean-
ing that they hardly contribute to an accurate person ordering.
Increasing the lower bound c has the effect of admitting fewer
items to the scale, but the selected items are better indicators of
the latent trait.

Positive values of H are interpreted using the following rules
of thumb. A set of items is considered unscalable for practical
purposes if H < .3 (e.g., Sijtsma & Molenaar, 2002, p. 60); that
is, although 0 ≤ H < .3 agrees with the MHM, from a practical
point of view, such low values suggest that person ordering is
inaccurate. Other rules of thumb are that .3 ≤ H < .4 indicates
a weak scale, .4 ≤ H < .5 a medium scale, and H ≥ .5 a strong
scale (Mokken, 1971, p. 185; Sijtsma & Molenaar, 2002, p. 60).

Automated item selection. The dimensionality of an item
set and the scalability (expressed by H ) for each item subset
that represents a dimension can be investigated by means of the
statistical package MSA for Polytomous items (MSP; Molenaar
& Sijtsma, 2000). A lower bound value c for Hj is chosen
optionally (its default value equals 0.3). The algorithm used
sequentially clusters items. The items are selected one by one
into disjoint clusters, each of which is relevant for the assessment
of a different latent trait. The algorithm consists of three steps:

Step 1: Select as starting pair the two items that have the great-
est, positive significant Hjk value of all item pairs among
the J items in the item pool, that is also greater than the
user-specified constant c (0 ≤ c ≤ 1). Hemker et al. (1995)
recommended trying several values for c, starting at c = 0,
and then using increments of .05 in each step until c = .6 (or
higher). The development of clusters as c increases provides
more insight into the scalability of the items than the eval-
uation of item clustering for only one c value. Denote the
starting pair (j , k1).

Step 2: From the remaining J -2 items, select the item, say, k2,
that (a) correlates positively with items j and k1; (b) has an
Hk2 value with respect to items j and k1 that is significantly
greater than 0 and also greater than lower bound c; and (c)
maximizes the H value of items j , k1, and k2 together given
all possible choices of a third item from the remaining J -2
items.

Step 3: Repeat Step 2 for the selection of a fourth item, say, k3,
from the remaining J -3 items; and so on.

The formation of the first cluster of items stops if no more
items remain that can be selected so as to satisfy the require-
ments in Step 2. The items selected up to that point constitute the
first scale. If items remain that do not satisfy the requirements
in Step 2, the selection procedure goes on to find a second scale

FIGURE 1.—The four estimated item step response functions of Item 10 for
minimum group size of 150.

from these unselected items using the same algorithm and, if
possible, a third scale, and so on. Items that cannot be selected
in one of the clusters remain nonscalable. Instead of letting the
algorithm select the starting pair in a cluster, the researcher may
define his or her starting set of at least two items, for example, if
theory would strongly suggest such a choice. See Van Abswoude
et al. (2004) for more information on scalability and dimension-
ality analysis in the context of item response theory.

Investigating Monotonicity of ISRFs

Selecting items with item scalabilty values of at least c (i.e.,
Hj ≥ c) will usually select items in scales of which the ISRFs
tend to be monotone; but for smaller values of c, the selection of
items with small Hj values may result in the admission of ISRFs
with serious nonmonotonicities. An example of nonmonotonic-
ity is depicted in Figure 1. Figure 1 shows the ISRFs of the
SCS’s Item 10. The horizontal axis represents the scale’s rest
score, that is, the total score (X+) minus the score on Item 10,
in eight different intervals. The vertical axis shows the propor-
tion P (X10 ≥ x|θ ) for x = 1 (highest curve) through 4 (lowest
curve). There is one small nonmonotonicity for x = 3 from rest
score interval 7 through 8 to interval 9 through 11. This non-
monotonicity does not much impair this item’s contribution to
the person ordering based on the total score from all SCS items
(the item’s scalability coefficient still is H10 = 0.39).

ISRFs of items may show more serious violations of the
monotonicity assumption, which result in lowHj values and little
if any contribution of the item to accurate person ordering.
The combination of a positive item-scalability coefficient and
nonmonotone ISRFs can be compared with a positive regression
coefficient in a linear regression model that is fitted to data from
a nonlinear model: The positive sign of the regression coefficient
does not imply that the underlying model is linear, only that the
relationship between the variables shows a positive tendency.

Despite the positive Hj value, nonmonotone ISRFs may dis-
turb the ordering of persons using the test total score (Junker &
Sijtsma, 2000; Sijtsma & Meijer, 2007). These nonmonotonic-
ities can occur with items that satisfy the formal definition of a
scale because item selection is based on scalability coefficients
exceeding lower bound c, and although this restriction alone
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already excludes many items of which the ISRFs show serious
nonmonotonicities, it does not rule them out. Thus, an MSA
also has to consider the monotonicity assumption of the ISRFs.
For this purpose, the MSP statistical program offers the possi-
bility to estimate the complete ISRFs of an item from the data
and to assess their monotonicity. MSP shows the graphical dis-
play of the ISRFs, such as those in Figure 1, and tests observed
nonmonotonicities for significance.

COMPARISON OF PCA AND MSA USING THE SCS
We already mentioned three differences between PCA and

MSA in passing (also see Scheirs & Sijtsma, 2001):

1. PCA is suited for dimensionality analysis, but it is not a
measurement model that implies particular scale properties.
In practice, for each separate factor, the factor scores or the
unweighed sum scores X+ are used to order people, but this
ordering does not follow from assumptions on which PCA is
based. On the other hand, MSA is based on a measurement
model (the MHM) and is aimed at fitting this model to the
data. In doing so, MSA therefore not only allows for dimen-
sionality analysis but also investigates the fit of a measure-
ment model to the data. This also entails the investigation of
the monotonicity assumption, and an MSA sometimes also
involves other analyses that were beyond the scope of this
study.

2. Because it is purely a computational technique, PCA always
results in J principal components for any set of items ir-
respective of whether these components are deemed useful
or not. On the other hand, MSA is based on assumptions
about trait dimensionality and relationships between items
and traits. These assumptions may either be supported or
refuted by the data. In the latter case, we have failed to con-
struct a scale. The possibility to reject a set of items as a
measurement scale is an advantage of MSA that helps mov-
ing measurement and theory building forward.

3. PCA can be based on tetrachoric or polychoric correlations,
thus avoiding artifacts in factor solutions (known as
difficulty factors) by eliminating undesirable effects of the
difference in discrete item-score distributions on interitem
correlations. MSA solves this problem by using the Hij

coefficients that normalize interitem covariances against the
maximum covariances given the discrete item-score distri-
butions (Michielsen et al., 2004; Van Abswoude et al., 2004).

Two additional important differences are the following:

4. PCA constructs a weighted linear combination of the J item
scores by considering the association of all J items simulta-
neously irrespective of whether they are driven by the same
trait. This almost always results in components that do not
reflect the dimensionality of the data, thus necessitating ro-
tation of a smaller number of components to obtain better
interpretation. MSA selects items one by one, but this ap-
proach may result in suboptimal outcomes. This happens
when an item has been selected into a cluster because it fit-
ted well together with the items already selected (in terms
of Hj ), but items selected in later steps had the effect of
reducing Hj more and more until it was unacceptably low
when the final cluster was assembled (although this effect

is known to be small in practice). Of course, the researcher
may then decide to remove this item after all.

5. The choice of a lower bound for c in MSA is done before
the item selection algorithm starts and strongly affects the
outcome of item selection. For example, a low c value admits
many items to the same cluster even though they are driven
by different traits. Thus, several choices of c should be tried,
and conclusions about dimensionality should be based on the
pattern of cluster outcomes that emerges as c increases. With
PCA (and rotation), the choice of the minimally acceptable
factor loading a does not affect the computations, but it
does affect the interpretation of the factor solution. Here,
the decision about the number of components to be retained
and the rotation method to be chosen and executed has to be
taken prior to the choice of minimum a. A similarity with
MSA could be the following: Just as MSA will come up
with several solutions for different choices of c, different
item clusters based on varying choices of a can be tried in
PCA. However, unlike MSA, trying varying choices of a does
not involve new computations. Many researchers actually try
different values of a in an effort to find satisfying solutions
for item clustering.

In the next section, we present a practical case using both
PCA and MSA to analyze test data. These data are collected by
means of the SCS (Larson & Chastain, 1990). In this analysis,
we highlight differences and similarities of both methods and
how they can be used to complement one another.

METHOD

Analysis Methods

First, we analyzed SCS data using PCA. We used both the
scree plot and the eigenvalue-greater-than-1 criterion to deter-
mine the number of components to be retained for rotation.
Then, because little was known about the self-concealment trait,
we used both varimax rotation and oblimin rotation to obtain
factors that were well interpretable. We tried several choices of
minimum loading for this purpose, and we compared the results.
Second, we used MSA for two purposes. Initially, we used the
automatic item selection procedure from the MSP program to
find the item clustering for several lower bound values c for
scalability, starting with c = 0, and increasing c with steps of
0.05 until c = 0.7. Finally, after a decision had been made with
respect to the dimensionality of the SCS data, we investigated
the monotonicity assumption at several levels of precision and
drew a conclusion about the accuracy with which the scale(s)
order(s) persons accurately.

SCS

The SCS (Larson & Chastain, 1990) consists of 10 positively
phrased items. Each item is evaluated on a 5-point rating scale
(0 = does not apply to me; 1 = somewhat applies to me; 2 =
moderately applies to me; 3 = strongly applies to me; and 4 =
completely applies to me), with a higher total scale score (the
sum of scores on all items of the scale, X+) suggesting a higher
level of self-concealment. The 10 items of the SCS are shown
in the Appendix. The items refer to the kind of information that
the self-concealer keeps secret from others without explicitely
referring to the content of that information. Some items mea-
sure either the possession of secrets or the tendency to have
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TABLE 1.—Item descriptives for total sample and men and women separately
and results of two-tailed t tests and Cohen’s d values comparing scores of men
and women.

Total Males Females
(n = 1,503) (n = 829) (n = 674)

d for
Item M SD Skew M SD Skew M SD Skew Gender

1 .82 1.25 1.34 .76 1.21 1.22 .88 1.29 1.23 −.10
2 .58 .95 1.73 .58 .93 1.44 .58 .97 1.82 .00
3 1.11 1.12 .75 1.11 1.11 .73 1.11 1.13 .78 .00
4∗∗ .65 1.10 1.69 .56 1.05 1.89 .75 1.16 1.48 −.17
5∗∗∗ 1.43 1.19 .35 1.53 1.20 .23 1.31 1.18 .50 .18
6∗ .84 1.04 1.11 .79 1.01 1.20 .91 1.07 1.01 −.12
7 .44 .88 2.15 .40 .80 2.14 .49 .96 2.09 −.10
8 .73 1.20 1.51 .70 1.13 1.51 .77 1.28 1.48 −.06
9 .47 .92 2.06 .44 .87 2.15 .52 .98 1.94 −.09

10∗ .72 .98 1.27 .67 .96 1.39 .78 .99 1.14 −.11
Total 7.80 7.19 1.16 7.56 6.91 1.22 8.10 7.51 1.09 −.08

score

*p < .05. **p < .01. ***p < .001.

secrets and the emotional consequences of this tendency, some
items refer to the way respondents deal with social interactions
while having a secret, and other items focus on the perception
self-concealers have of the consequences should others know
their secret.

Study Participants

The sample consisted of 1,503 participants representative of
the Dutch general population, of which 829 were men (55%) and
674 women (45%). The mean age was 44.19 years (SD = 15.10),
and age ranged from 16 to 85 years. All participants were mem-
bers of an internet-based telepanel and completed a computer-
administered test battery. There were no missing values.

RESULTS

SCS Item Descriptives

The mean total SCS score was 7.56 (SD = 6.91) for men and
8.10 (SD = 7.51) for women. This difference was not statisti-
cally significant, t(1501) = –1.45, p = .15, two-tailed, Cohen’s
d = –.08. Table 1 shows the mean, standard deviation, and skew-
ness for all items for the total sample and for men and women
separately. Note that although total scores did not differ signifi-
cantly, men scored higher on average than women on one item
on tending to keep bad things for oneself (Item 5) and lower on
three items (4, 6, and 10).

Application of PCA to SCS Data

First, Cronbach’s alpha for the 10 items together was .86. Such
a high value may indicate scale unidimensionality (Nunnally,
1978, chap. 8). PCA yielded a first principal component that
explained 46.1% of the total variance (eigenvalue λ1 = 4.61)
and a second principal component that explained 10.3% (λ2 =
1.03). The other principal components had eigenvalues smaller
than 1. The scree plot (Figure 2) shows a sharp bend at λ2,
suggesting that only the first component should be retained. The
eigenvalue-greater-than-1 criterion identifies two components to
be retained, although it must be noted that the second eigenvalue
is only just larger than 1.0. These results agree with those that

FIGURE 2.—Scree plot of the Self-Concealment Scale.

have been reported in the literature; thus, we consider both a
single-factor solution and a two-factor solution.

To interpret the one-factor solution, we evaluated the cor-
rected item-total correlation for each item (Nunnally, 1978,
chap. 8), that is, the correlation of each item with the total score
on the remaining nine items. The corrected item-total correla-
tions are shown in the second column of Table 2. The substantial
corrected item-total correlations (ranging from .45–.70) support
a single dimension. Because we did not have a sound theo-
retical basis to expect either orthogonal or oblique dimensions
(Nunnally, 1978, chap. 12), the two-factor solution was studied
by means of both varimax (orthogonal) and oblimin (oblique)
rotation. These rotation methods yielded comparable pattern co-
efficients. Oblimin rotation yielded factors that correlated .54.
Table 2 (third and fourth columns) shows the pattern coeffi-
cients after oblimin rotation. The first factor was composed of
six items with coefficients between .46 and .93 (and Cronbach’s

TABLE 2.—Corrected item-total correlations (second column) and pattern co-
efficients after oblimin rotation of two principal components (third and fourth
columns).

Item No. Corrected Item-Total Correlations F1 F2

8 (secret so private I’d lie
when asked)

.64 .93 –.15

9 (secrets too embarrassing to
share)

.70 .88 –.04

1 (important secret not shared
with anyone)

.62 .76 .01

4 (secrets tormented me) .62 .65 .13
2 (friends like me less) .59 .52 .25
7 (telling secret backfires,

regret)
.52 .46 .23

5 (tend to keep bad things for
myself)

.45 –.15 .84

6 (afraid to reveal without
wanting)

.55 .09 .69

10 (negative thoughts about
myself not shared)

.52 .10 .65

3 (many things about me I
keep to myself)

.63 .26 .58

Note. Lowest and highest corrected item-total correlations (second column) are printed
in boldface as well as the highest pattern coefficients for each item (third and fourth
columns).
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TABLE 3.—Mean item scores and item H values for the total group and for men
and women separately.

Item H

Item No. Total Men Women

5 .37 .38 .37
7 .39 .42 .37

10 .39 .40 .38
6 .41 .41 .41
2 .44 .42 .46
1 .45 .42 .48
4 .45 .42 .48
8 .46 .45 .47
3 .47 .48 .47
9 .52 .50 .54

α = .84), and the second factor was composed of four items with
coefficients between .65 and .84 (and Cronbach’s α = .72).

Application of MSA to SCS Data

Results for all items considered as one scale. First, the 10
items from the SCS were considered as one scale. As can be seen
in Table 3, the ordering of the items according to scalability as
measured by Hj were comparable although somewhat different
for men and for women relative to the total group and between
men and women. For both groups, the Hj coefficients were all
greater than .3. The total H coefficients were nearly equal for
men and women: H = .43 for men and H = .44 for women
(and H = .44 in the total group), indicating medium scalability.

Dimensionality analysis. Table 4 shows the results of auto-
mated item selection for the entire group of participants, starting
with lower bound c = 0 and progressively increasing c with steps
of .05 in each next analysis until c = .70, following advice from
Hemker et al. (1995). For 0 ≤ c ≤ .35, all items were selected in
one scale. For c = .40, one scale with six items and another with
three items were formed, and one item remained unscalable. In
the next step (c = .45), the second scale lost one item; and for
c = .50, the first scale was reduced to four items, whereas the
two items from the second scale were replaced by two different
items than in the previous steps. For higher c values, the second
scale had disappeared, whereas the first scale further crumbled
down to three, two, and finally no items.

The pattern of results made visible here resembles that which
Hemker et al. (1995) considered typical of a unidimensional
scale: First, all items are in one scale for small values of c (≤
0.3), and then as c grows more and more, this scale slowly starts
to lose items until finally all items are unscalable. One could

TABLE 4.—Item numbers for selected scales (and their H values) when c values
increase in steps of .05 and unscalable items.

c Scale 1 Scale 2 Unscalable

.00–.35 1–10 (.44)

.40 1–4, 8, 9 (.52) 6, 7, 10 (.44) 5

.45 1–4, 8, 9 (.52) 6, 10 (.45) 5, 7

.50 1, 4, 8, 9 (.57) 3, 5 (.52) 2, 6, 7, 10

.55 1, 8, 9 (.62) 2–7, 10

.60-.70 8, 9 (.74) 1–7, 10

Note. For men and women separately, approximately the same results were found.

FIGURE 3.—The four estimated item step response functions of Item 10 for
minimum group size of 50.

argue that the appearance of the three-item scale when c = .40
is somewhat at odds with the results of Hemker et al. and may
warrant the existence of a second dimension, albeit a weak one.

Investigating monotonicity of ISRFs. Monotonicity of the
ISRFs was investigated by estimating for each item in the 10-
item scale the four ISRFs (for item scores at least equal to 1, 2,
3, and 4, but not 0 because then the ISRF equals 1 by defini-
tion), assuming minimum group sizes (abbreviated minsize) of
150 and 50 respondents in two separate analyses. These group
sizes represent the minimum numbers of respondents used for
estimating a discrete point of the ISRFs. Each group consists of
respondents with the same θ or neighboring θ values and can
be considered homogeneous in this sense. To estimate the ISRF
for item score x of item j, that is, P (Xj ≥ x|θ ), the fraction is
determined that has at least a score of x on the item in each
homogeneous group. Across adjacent groups, connecting these
fractions gives an estimate of the ISRF. Relatively large groups
(e.g., minsize = 150) produce accurate estimates of the ISRFs
but for wide intervals of θ . For example, if minsize = 150, then
the ISRF is estimated for at most 10 intervals of θ given the
sample size of 1,503. Figure 1 depicts the ISRFs for minsize =
150, resulting in 8 intervals of the rest score group of Item 10
for which the rest score is considered an approximation of θ .
Relatively small values (e.g., minsize = 50; at most 30 points are
estimated) produce less accurate estimates but show much more
detail, thus revealing possible violations more easily. Figure 3
depicts the ISRFs for minsize = 50, resulting in 17 intervals.
Thus, there is a trade-off between accuracy and bias: Either one
sees little of the ISRFs (meaning more bias), but what is visi-
ble is also relatively precise, or one sees more detail, but what
one sees is relatively less trustworthy (smaller precision). In the
latter situation, local statistical tests for decreases in the ISRFs
should protect the data analyst from drawing false conclusions.

The MSP program scans each estimated ISRF for decreases.
For each ISRF, each pair of fractions in which the second fraction
is smaller than the first constitutes a potential violation of the
monotonicity assumption (notice that the total number of pairs
per ISRF depends on the choice of minsize and considerations
beyond the scope of this study; see Molenaar & Sijtsma, 2000,
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for more information). MSP controls for chance capitalization in
three ways: (a) by forming homogeneous groups of at least min-
size, unstable proportion estimates are avoided; (b) by ignoring
sample violations of monotonicity smaller than a user-specified
value (.03 by default) so that small and unimportant oscillations
are not counted; and (c) by testing each decrease larger than the
minimum value for significance at a user-specified significance
level (.05 by default; using a standard normal approximation to
a hypergeometric distribution).

For minsize = 150, in 40 ISRFs (i.e., 4 ISRFs for each of the 10
items), only one sample violation of monotonicity greater than
.03 was found. It had size .06, and it was statistically significant
(p = .03, one-tailed test). This violation occurred in the ISRF
for X10 ≥ 3, that is,P (X10 ≥ 3|θ̂ ), with θ̂ estimated from the
data using minsize = 150. Note that at this point the ISRF does
not increase but decreases (see Figure 1). For minsize = 50, a
total of 98 sample violations greater than .03 were found. The
smallest number (3 sample violations) occurred with Item 3, and
the greatest number (22) occurred with Item 5. Out of these 98
sample violations, 6 were significant. Two significant violations
occurred with Item 1 (p values were .03 and .04; in both cases,
the size of the violation was .16), 1 with Item 5 (p = .04; size
was .17), and 3 with Item 6 (p values were .03, .01, and .04; sizes
were .18, .22, and .07). None occurred with Item 10 depicted
in Figure 1. For reasons of comparison, Figure 3 shows the
estimated ISRFs of Item 10 for minsize = 50. Comparing both
figures, one sees the precision-bias trade-off nicely illustrated.

An important question is what one should conclude on the
basis of the monotonicity analysis. It is advisable not only to look
at detailed results but keep in mind what the analysis is about
in the first place. To construct a scale on which all individuals
are ordered, it is important to collect enough evidence on the
fit of the model to the data, and investigating the monotonicity
assumption is an important part of this fit investigation. In the
data, only 6 out of 98 violations (i.e., 6.12%) greater than .03
were found to be significant at a 5% level, but the number of 6
significant violations is negligible if one considers all possible
pairs of fractions in which a violation of monotonicity could
occur. Also, inspecting Figure 3 and the graphs for the other
nine items (not provided here), shows that despite the many
decreases, the curves show a strong tendency to increase with
increasing latent trait value even though there is no exactitude
here. These observations are taken as convincing evidence of
monotonicity, and this supports the contention that participants
can be ordered using the items of the SCS.

DISCUSSION

The aim of this article was twofold. First, we wanted to pro-
vide a theoretical introduction to MSA and compare PCA with
MSA, and the second aim was to give an empirical example
on how MSA can be applied to determine scale dimensionality
by using data on the SCS, a questionnaire of which the exact
dimensionality is still not unequivocally determined.

Both PCA and MSA aim at determining the dimensionality
of an item set. In our study, both methods resulted in different
and complementary considerations regarding the dimensional-
ity of the SCS. Executing the PCA, we investigated both a
single-factor solution (all 10 items had high corrected item-
total correlations) and a two-factor solution (PCA followed by
oblimin rotation). We found a strong factor of 6 items and a

second, albeit weak, factor of 4 items in the two-factor solution.
We conclude that PCA/oblimin favor the single-factor solution:
In particular, the high correlations between the oblique factors
(r = .54) and the substantial corrected item-total correlations
support a unidimensional structure.

MSA provided a detailed analysis of the items’ scalability and
dimensionality structure. By progressively increasing the lower
bound c for scalability and thus placing stronger demands on
the data structure, MSA provided alternating ways of forming
scales. Studying the pattern of cluster outcomes with increasing
lower bounds provides detailed information on the most appro-
priate conclusion with respect to scalability and dimensionality.
Overall, the MSA results suggested a medium to strong uni-
dimensional solution of six (for .40 ≤ c ≤ .50) to four items
(at c ≥.50), respectively. This solution is centered around Items
1, 4, 8, and 9 that explicitly refer to the possession of at least
one personally distressing secret and the reluctance to share this
secret with other people.

The congruence between PCA and MSA with regard to a
unidimensional structure strongly suggests that the SCS is in-
deed unidimensional. Yet, there are some important differences
between the PCA and MSA results that show the merit of apply-
ing MSA to determine dimensionality. First, PCA incorporated
Items 2 and 7 in the first factor even though the content of these
items (apprehension about social consequences following shar-
ing secrets) is clearly different from the other items of the first
factor. MSA eliminated Item 7 at c = .45 and Item 2 at c =
.50, revealing that a strong scale could be formed only with the
elimination of these two items. Thus, although MSA reached
a similar conclusion regarding the SCS dimensionality as PCA
did, it made clear that this single dimension consisted of fewer
items than suggested by PCA plus rotation. That is, MSA un-
covered a core of four items (Items 8, 9, 1, and 4), whereas PCA
plus rotation suggested six items (Items 8, 9, 1, 4, 2, and 7).

A second difference is that PCA does not produce a scale. On
such a scale, one would expect respondents who score low on
items that measure a mild behavioral expression of the trait to
obtain a low position. That is, these respondents are expected
to have a small probability that higher scores are obtained on
items that measure more explicit expressions of the trait. In ad-
dition to assessing dimensionality, MSA allows for scrutinizing
the monotonicity of the ISRFs, which not only enables con-
structing scales but also determining the scale’s reliable ordinal
person measurement capacity. In the SCS, the ISRFs show a
strong tendency to increase with increasing latent trait value,
suggesting the SCS can adequately be used to order respon-
dents. This is an important conclusion given that several authors
have sought specific characteristics of secrets that would be
detrimental for physical or mental well-being, yet to no avail
(see, e.g., Finkenauer, Engels, & Meeus, 2002). Given that the
SCS can be used to provide a scale for respondents, the SCS can
adequately distinguish between high versus low self-concealers.
This distinction can then be used to analyze the similarities or
differences of the secrets that both groups of respondents have.

The results show that Larson and Chastain’s (1990) original
purpose to design a multidimensional instrument that measures
self-concealment only partly succeeded. From the three sepa-
rate dimensions the SCS was designed to measure (tendency
to self-conceal, possession of a personally distressing secret,
and apprehension about disclosure), only a single dimension
representing the possession of at least one personally distressing
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secret and the reluctance to share these secrets was found. At
best, this dimension can be seen as a hybrid between two from
the three separate dimensions Larson and Chastain originally
envisioned.

In addition, maintaining a serious secret has emotional and
cognitive consequences such as increased levels of anxiety and
depression (Larson & Chastain, 1990; Pennebaker, Colder, &
Sharp, 1990) and rumination or perseverative thinking (Lane &
Wegner, 1995) that must be addressed in any instrument that
measures secrecy. The unidimensional character of the SCS
therefore seems not to do right to the multidimensionality of
secrecy. We therefore call for a revision of the SCS for which
our MSA results form a good starting point. For example, the
items with lowest scalability (in this case, Items 5 and 7) could
be discarded.

CONCLUSION

We showed the merit of MSA as a complementary tool to
PCA to determine the dimensionality of an item set. MSA cir-
cumvents the problem of difficulty factors often encountered by
PCA by eliminating effects of the difference in individual item-
score frequency distributions (Michielsen et al., 2004). Further,
the detailed output provides a clear view on the items’ scalability
that can not be obtained with PCA. Monitoring the emergence
and breakdown of the subscales at various lowerbound c levels
offers a unique possibility to determine which items to retain and
which to discard. We therefore recommend that MSA should be
used more often in addition to traditional factor-analytic meth-
ods such as PCA. Finally, using both PCA and MSA, we provide
some recommendations on how to improve the SCS as a scale
to assess the general tendency to conceal personally relevant
information.
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APPENDIX.—Items of the Self-Concealment Scale (Larson & Chastain, 1990).

1. I have an important secret that I haven’t shared with anyone.
2. If I shared all my secrets with my friends, they’d like me less.
3. There are lots of things about me that I keep to myself.
4. Some of my secrets have really tormented me.
5. When something bad happens to me, I tend to keep it to myself.
6. I’m often afraid I’ll reveal something I don’t want to.
7. Telling a secret often backfires and I wish I hadn’t told it.
8. I have a secret that is so private I would lie if anybody asked me

about it.
9. My secrets are too embarrassing to share with others.
10. I have negative thoughts about myself that I never share with

anyone.

Note. From “Self-Concealment: Conceptualization, Measurement, and Health Implica-
tions," by D. G. Larson and R. L. Chastain, 1990, Journal of Social and Clinical Psychology,
9, pp. 439–455. Copyright c© 1990 by Guilford Press. Reprinted with permission.


